INORGANIC CHEMISTRY

FRONTIERS

RESEARCH ARTICLE

Check for updates

Cite this: *Inorg. Chem. Front.*, 2020, **7**, 247

In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand via deaminative coupling in Ni(II) complexes: crystal structures, magnetic properties and catecholase activity study[†]

Monotosh Mondal,^{a,b} Soumavo Ghosh, ^D^a Souvik Maity,^a Sanjib Giri ^D^c and Ashutosh Ghosh ^D*^a

A new dimeric Ni(II) complex, $[Ni_2L^{1}_2(CH_3CN)_4](ClO_4)_2 \cdot 2CH_3CN$ (**1**), was synthesized using an N₂O donor reduced Schiff base $[(HL^1) = 2-[(3-methylamino-propylamino)-methyl]-4-phenol]$. Surprisingly, during an attempt to replace its ClO_4^- ion with SCN⁻, the N₂O donor ligand *in situ* converted to a tetradentate N₂O₂ donor ligand and formed a metal complex, $[Ni(HL^2)(NCS)(CH_3CN)]$ (**2**). A probable mechanism *via* deaminative coupling for this conversion is proposed. Using **2** as a metalloligand under basic conditions, a trinuclear metal complex, $[Ni_3(L^2)_2(NCS)_2(H_2O)_4] \cdot H_2O$ (**3**), was prepared. Single crystal structural characterization revealed that in all three metal complexes, the Ni(II) atoms were in an octahedral environment with coordinated solvent molecules (CH₃CN in **1** and **2** and H₂O in **3**). Among the three metal complexes, **1** and **3** showed catecholase-like biomimicking activity. The calculation of the turnover numbers ($K_{cat} = 7.9$ for **1**, 14.5 for **3**) reveals that **3** is a better catalyst than **1**. Mechanistic cycles are proposed for this biomimicking activity on the basis of ESI-MS spectrometry and iodometric measurements. Temperature-dependent magnetic susceptibility measurements suggest that the Ni(II) ions in metal complexes **1** and **3** are antiferromagnetically coupled ($J = -32.22 \text{ cm}^{-1}$ for **1**, $J = -10.4 \text{ cm}^{-1}$ for **3**), consistent with their geometries and bridging angles. Theoretically calculated *J* values ($J = -40.15 \text{ cm}^{-1}$ for **1**, $J = -14.53 \text{ cm}^{-1}$ for **3**) by the DFT method corroborate well with the experimental values.

Received 2nd August 2019, Accepted 23rd October 2019 DOI: 10.1039/c9qi00975b rsc.li/frontiers-inorganic

Introduction

N,O-Donor ligands have been widely designed and used for the synthesis of the coordination complexes of predetermined nuclearity and stereochemistry depending upon the type of metal ions.¹ However, from a synthetic viewpoint, this synthesis is not free from unexpected outcomes, such as structural serendipity,² in situ ligand transformation,³ and the formation of carbonato-bridged complexes by atmospheric CO₂ fixation.⁴ Structural serendipity is encountered very often during inorganic synthesis; however, the transformation of organic ligand scaffolds has also been observed on few occasions, which opens up new avenues of metal-assisted catalytic transformation to obtain value-added chemicals. These in situ ligand transformations mostly depend on the reactivity of the functional groups towards nucleophilic addition,⁵ hydro-/solvolysis,⁵ cycloaddition,^{5,6} isomerisation,⁷ elimination,⁸ oxidation,⁹ reduction,¹⁰ and condensation¹¹ as well as substitution on aromatic side chains.¹² The metal ion often plays a very important role in such transformations.¹³ For example, strongly Lewis acidic redox-inactive metal ions are known to activate the electrophilic center of the imine group of a Schiff base, giving rise to nucleophilic addition.^{14,15} These transition metal ion-catalyzed coupling reactions have important synthetic applications in single step organic transformation.¹⁶

We have been using $N_2 O\text{-}donor$ Schiff bases for quite some time to synthesize polynuclear transition metal complexes

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India. E-mail: ghosh_59@yahoo.com;

Fax: +91-33-2351-9755; Tel: +91-94-3334-4484

^bDepartment of Chemistry, Haldia Government college, Debhog,

Purba Medinipur-721657, India

^cDepartment of Chemistry, Sri Ramkrishna Sarada Vidya Mahapitha, Kamarpukur, West Bengal 712612, India

[†] Electronic supplementary information (ESI) available: ESI-MS spectra of metal complexes 1–3; different reaction mixtures as well as spectra of complexes 1 and 3 with 3,5-DTBC; table of the bond parameters of complexes 1–3; different plots and mechanistic cycle of 1 for catecholase activity; magnetization and correlation plots of 1 and 3; table of kinetic parameters for the catecholase activity of 1 and 3. CCDC 1944919–1944921. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9qi00975b